電磁流量計(jì)的勵磁方式有哪些
點(diǎn)擊次數(shù):5098 發(fā)布時間:2021-03-19 08:49:14
人們開始研究電磁流量計(jì)時,*先想到使用的勵磁磁場自然是直流磁場,后來又發(fā)明了正弦波交流磁場、低頻矩形波磁場、三值低頻矩形磁場以及雙頻矩形波磁場等。它們的磁場理想波形如圖7-3所示。
直流勵磁技術(shù)
直流勵磁技術(shù)是*初的電磁流量計(jì)采用的勵磁技術(shù),它是利用永磁體或者直流電源給電磁流量傳感器勵磁繞組供電,以形成恒定的直流磁場,磁場波形如圖7-3a所示。直流勵磁技術(shù)具有方法簡單可靠,受工頻干擾影響很小以及流體中的自感現(xiàn)象可以忽略不計(jì)等特點(diǎn)。但是,直流勵磁技術(shù)的*大問題是直流感應(yīng)電勢在兩電*表面上形成固定的正負(fù)*性,引起被測流體介質(zhì)點(diǎn)解而產(chǎn)生正負(fù)離子,導(dǎo)致電*表面*化現(xiàn)象,使感生的流量信號電勢減弱,電*間等效電阻增大,同時出現(xiàn)電**化電勢漂移,嚴(yán)重影響信號處理部分的工作。即使電*采用*化電勢很小的鉑、金等貴重金屬或其合金材料,常常也存在微弱的*化電勢,同時儀表的制造成本也較高。另外,直流勵磁在電*間產(chǎn)生不均衡的電化學(xué)干擾電勢疊加在直流流量信號中,無法消除,并隨著時間的變化、流體介質(zhì)特性以及流動狀態(tài)而變化。*三,直流放大器的零點(diǎn)漂移、噪聲和穩(wěn)定性問題難以獲得很好解決,特別是在小流量測量時,信號放大器的直流穩(wěn)定度必須在幾分之一微伏之內(nèi),這樣就限制了直流勵磁技術(shù)的應(yīng)用范圍。目前直流勵磁技術(shù)僅在原子能工業(yè)中用于電導(dǎo)率*高,而又不產(chǎn)生*化效應(yīng)的液態(tài)金屬流量測量中。
工頻正弦波勵磁技術(shù)
工頻正弦波勵磁技術(shù)是利用正弦波工頻(50Hz)電源給電磁流量傳感器勵磁繞組供電,其主要特點(diǎn)是產(chǎn)生的磁場為一正弦波交變磁場,如圖7-3b所示。這種勵磁方式能夠基本上消除電*表面的*化現(xiàn)象,降低電*電化學(xué)電勢的影響和傳感器內(nèi)阻。另外,采用工頻正弦波勵磁技術(shù),其傳感器輸出的流量信號仍然是工頻正弦波信號,易于放大處理,能避免直流放大器存在的實(shí)際困難。而且勵磁電源簡單方便。
在工頻正弦波勵磁方式中,交流磁場的磁感應(yīng)強(qiáng)度B=Bmsinωt在電*上產(chǎn)生的感生電動勢為
被測體積流量為
式中 Bm是交變磁感應(yīng)強(qiáng)度的*大值;w是勵磁電流角頻率,w=2πf;f是勵磁電源頻率。
值得注意的是,工頻正弦波勵磁技術(shù)的采用會帶來一系列電磁干擾和噪聲。
*先是電磁感應(yīng)產(chǎn)生正交干擾(又稱90°干擾),一般認(rèn)為正交干擾是由“變壓器效應(yīng)”造成的。在電磁流量傳感器中,由于電*、引線、被測介質(zhì)和電磁流量轉(zhuǎn)換器的輸入電路構(gòu)成的閉合回路處在一交變的磁場中,所以,即使被測介質(zhì)不流動,處于該交變磁場中的閉合回路也會產(chǎn)生電勢ρ1和感生電流,顯然,這是一干擾電勢。根據(jù)電磁感應(yīng)原理,該干擾電動勢與磁場對時間的變化率的負(fù)值正正比。即
這就是正交干擾信號電勢,它具有以下幾個特點(diǎn)。
1)與流量無關(guān),即使流體靜止不動,這樣的信號依然存在;
2)在相位上比流量信號滯后90°,故也稱90°干擾;
3)勵磁電流頻率越高,正交干擾也越嚴(yán)重,實(shí)際應(yīng)用中,正交干擾信號可以遠(yuǎn)大于流量信號。
所以如何克服正交干擾電勢的影響是工頻正弦波勵磁技術(shù)的主要課題。
其次是同相干擾,是指同時出現(xiàn)在傳感器兩個電*上,頻率和相位都和流量信號一致的干擾信號。一般認(rèn)為是靜電感應(yīng),絕緣電阻分壓以及傳感器管道上的雜散電流所引起。如圖7-4所示,傳感器的勵磁線圈對電*A和B不僅存在著絕緣電阻Rm,同時還存在著分布電容Cf。設(shè)兩電*之間的內(nèi)阻為Rs,則勵磁電壓U通過絕緣電阻和分布電容與傳感器內(nèi)阻分壓,在兩電*上同時產(chǎn)生壓降。
設(shè)勵磁電壓為U=Umsinωt,則在Cf上產(chǎn)生的容抗為
Rc和Rm并聯(lián),如果Rm》Rc,則得總阻抗R約為Rc。這樣,R和內(nèi)阻Rs/2對勵磁電壓U進(jìn)行分壓,在電*上將得到由分布電容Cf串進(jìn)的干擾電壓e2為
由于同相干擾信號的頻率和相位與流量信號完全一致,疊加在流量信號中難以消除,以至電磁流量計(jì)零點(diǎn)不穩(wěn)定。
*三是工頻正弦波供電電源存在電源電壓和頻率的波動,由式(7-5)可知,電壓和頻率分布影響B(tài)m和ω,從而造成對測量的影響。
實(shí)際應(yīng)用中,雖然已采取相敏整流、嚴(yán)格的電磁屏蔽和線路補(bǔ)償、電源補(bǔ)償、自動正交抑制系統(tǒng)等技術(shù)措施以消除與流量信號頻率一致的工頻干擾電壓,但由于正交干擾信號電勢往往有較大幅值,自動正交抑制系統(tǒng)等抗干擾措施不可能完全消除干擾信號,從而導(dǎo)致電磁流量計(jì)零點(diǎn)的不穩(wěn)定,測量精度難以提高。這就是工頻正弦波勵磁方式對電磁流量計(jì)的限制,使得電磁流量計(jì)的性能很難進(jìn)一步提高。
低頻矩形波勵磁技術(shù)
低頻矩形波勵磁技術(shù)是結(jié)合了直流勵磁和交流勵磁技術(shù)的優(yōu)點(diǎn),同時避免了它們?nèi)秉c(diǎn)的一種勵磁技術(shù)。20世紀(jì)70年代以來,隨著集成電流技術(shù)和同步采樣技術(shù)的發(fā)展和實(shí)用化,低頻矩形波勵磁技術(shù)應(yīng)運(yùn)而生,在電磁流量計(jì)中得到廣泛實(shí)用。它的勵磁磁場波形如圖7-3c和d所示,其頻率通常為工頻的偶數(shù)分之一(一般為1/2-1/32)。70年代前期以單*性低頻矩形波勵磁技術(shù)為主,后期以雙*性低頻矩形波勵磁技術(shù)為主而開始其工業(yè)應(yīng)用。
從圖7-3中可以看到,在半個周期內(nèi),磁場是一恒穩(wěn)的直流磁場,它具有直流勵磁技術(shù)受電磁干擾影響小,不產(chǎn)生渦輪效應(yīng)、正交干擾和同相干擾小等特點(diǎn);從整個時間過程看,矩形波信號又是一個交變信號,具有正弦波勵磁技術(shù)基本不產(chǎn)生*化現(xiàn)象,便于放大和處理信號,避免直流放大器零點(diǎn)漂移、噪聲、穩(wěn)定性等問題的優(yōu)點(diǎn)。所以低頻矩形波勵磁技術(shù)具有良好的抗干擾性能,在電磁流量計(jì)中已得到廣泛應(yīng)用。
低頻矩形波勵磁中,由于勵磁電流矩形波存在上升沿和下降沿,根據(jù)式7-6,在上升沿和下降沿處,必然也存在正交干擾(微分干擾)。其沿越陡,微分干擾電勢越大,但很快就會消失,形成一很窄的尖峰脈沖;上升沿和下降沿變化越緩慢,則微分干擾越小,但經(jīng)歷時間越長。
如何消除上升沿和下降沿處的微分干擾,是低頻矩形波勵磁技術(shù)要解決的主要問題之一。由于一般電磁流量傳感器勵磁繞組中電感和電阻的比值L/R往往較小。隨著勵磁電流進(jìn)入穩(wěn)態(tài),微分干擾也很快能自動消失。所以,為了排除微分干擾對流量信號的影響,通常在勵磁電流進(jìn)入穩(wěn)態(tài)的恒定階段(即矩形波的平頂部分)后,再對流量信號電壓進(jìn)行同步采樣,如圖7-5所示。
這樣,微分干擾信號不能進(jìn)入同步采樣,因此也不影響流量信號輸出。此外,同步采樣脈沖相對工頻來說是一寬脈沖,并選擇為工頻周期或工頻周期的整數(shù)倍,如圖7-5e所示,這樣,即使流量信號中混有工頻干擾信號,因其采樣時間為完整的工頻周期,其平均值為零,工頻干擾電壓不起作用。另一方面,由于勵磁頻率低,渦電流很小,靜電耦合分布電容的影響小,所以,由于靜電感應(yīng)而產(chǎn)生的同相干擾也大大減小。綜上所示,低頻矩形波勵磁方式有以下幾個優(yōu)點(diǎn)。
這樣,微分干擾信號不能進(jìn)入同步采樣,因此也不影響流量信號輸出。此外,同步采樣脈沖相對工頻來說是一寬脈沖,并選擇為工頻周期或工頻周期的整數(shù)倍,如圖7-5e所示,這樣,即使流量信號中混有工頻干擾信號,因其采樣時間為完整的工頻周期,其平均值為零,工頻干擾電壓不起作用。另一方面,由于勵磁頻率低,渦電流很小,靜電耦合分布電容的影響小,所以,由于靜電感應(yīng)而產(chǎn)生的同相干擾也大大減小。綜上所示,低頻矩形波勵磁方式有以下幾個優(yōu)點(diǎn)。
1)能避免正弦波交流磁場的正交干擾;
2)基本消除由分布電容引起的工頻干擾;
3)能抑制交流磁場在管壁和流體內(nèi)引起的渦電流;
4)能消除直流磁場的*化現(xiàn)象。
低頻矩形波勵磁技術(shù)的采用,解決了長期困擾電磁流量計(jì)的電磁干擾問題,大大提高了電磁流量計(jì)的零點(diǎn)穩(wěn)定性和測量精度,縮小傳感器的體積,降低勵磁功率,使轉(zhuǎn)換器和傳感器一體化,提高電磁流量計(jì)的整體性能,拓寬了電磁流量計(jì)的工業(yè)應(yīng)用領(lǐng)域。
勵磁技術(shù)的新發(fā)展
1、三值低頻矩形波勵磁技術(shù)
三值低頻矩形波勵磁技術(shù)是人們在總結(jié)低頻矩形波勵磁技術(shù)的基礎(chǔ)上,為了使儀表零點(diǎn)更穩(wěn)定而提出的一種勵磁技術(shù),磁場波形如圖7-3e所示。其*大的特點(diǎn)是實(shí)現(xiàn)在零態(tài)時動態(tài)校正零點(diǎn),因而具有更優(yōu)良的零點(diǎn)穩(wěn)定性。
三值低頻矩形波勵磁方式的勵磁電流一般采用工頻的1/8頻率,以+B,0,-B三值進(jìn)行勵磁,通過對正一零一負(fù)一零一正變化規(guī)律的三種狀態(tài)進(jìn)行采樣和處理,如圖7-6所示。
其*要的特點(diǎn)是能在零態(tài)時動態(tài)校正零點(diǎn),有效地消除了流量信號的零位噪聲,從而大大提高了儀表零位的穩(wěn)定性;其次,它與低頻矩形波勵磁技術(shù)一樣,可以采用同步采樣技術(shù)來消除上升沿和下降沿處的微分干擾;采用寬脈沖采樣以消除混在流量信號中的工頻干擾信號;*三,它可以通過一個周期內(nèi)的四次采樣值,近似認(rèn)為*化電勢恒定,利用微處理機(jī)的數(shù)值運(yùn)算功能得以消除*化電勢的影響。
其*要的特點(diǎn)是能在零態(tài)時動態(tài)校正零點(diǎn),有效地消除了流量信號的零位噪聲,從而大大提高了儀表零位的穩(wěn)定性;其次,它與低頻矩形波勵磁技術(shù)一樣,可以采用同步采樣技術(shù)來消除上升沿和下降沿處的微分干擾;采用寬脈沖采樣以消除混在流量信號中的工頻干擾信號;*三,它可以通過一個周期內(nèi)的四次采樣值,近似認(rèn)為*化電勢恒定,利用微處理機(jī)的數(shù)值運(yùn)算功能得以消除*化電勢的影響。
所以,采用三值低頻矩形波勵磁技術(shù)的電磁流量計(jì)零點(diǎn)穩(wěn)定,抗工頻能力強(qiáng),測量精度進(jìn)一步提高,傳感器單位流速的流量信號電壓可降低到工頻勵磁方式時的1/4,從而可進(jìn)一步降低勵磁功耗,實(shí)現(xiàn)電磁流量計(jì)的小型輕量一體化,在電磁流量計(jì)中已得到廣泛應(yīng)用。
2、雙頻矩形波勵磁技術(shù)
三值低頻矩形波勵磁方式具有優(yōu)良的零點(diǎn)穩(wěn)定性,但在測量泥漿(如泥漿流量計(jì))、紙漿等含纖維和固體顆粒的流體介質(zhì)和低電導(dǎo)率流體流量時,出現(xiàn)固體顆粒擦過電*表面而產(chǎn)生低頻尖峰噪聲和流體流動噪聲,這樣往往導(dǎo)致勵磁頻率較低的三值勵磁電流流量計(jì)輸出擺動不穩(wěn)。
三值低頻矩形波勵磁零點(diǎn)穩(wěn)定,但無法抑制低頻噪聲;較高頻率的矩形波磁場能消除低頻噪聲,但一般其零點(diǎn)穩(wěn)定性欠佳。人們在分析各種勵磁技術(shù)的基礎(chǔ)上,提出了雙頻矩形波勵磁技術(shù),其磁場波形如圖7-3f所示。高頻部分是75Hz的矩形波,外包絡(luò)線是1/8工頻的低頻矩形波。采用這種勵磁方式,可用高頻波采樣來消除含纖維和固體顆粒流體介質(zhì)的低頻噪聲,同時又保持了低頻矩形波勵磁零點(diǎn)穩(wěn)定的優(yōu)點(diǎn),取得了很好的應(yīng)用效果。